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Abstract
Kalman Filters are currently used to optimally estimate the value of a measurement in

spite of noise associated with the sensors. The encoder configuration of an Artificial
Neural Systems (ANS) also has the ability to filter noise from multiple input sources.
There are some similarities, and many differences between the two techniques. This paper
compares and contrasts the two techniques and suggests a method for incorporating
features of multi-state Kalman filters to an organization of ANS encoders.
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Contrasting Approaches to Noise Filtering:
Kalman Filters and Artificial Neural Systems

Introduction
In the filtering world we talk about the Truth,

which is the exact perfect solution, and
measurements of the answer which aren't as
accurate as we desire. The Filter combines
measurements to produce a more accurate
solution, closer to Truth.

For example, suppose we were traveling in a
car at 55.345 MPH. Our speedometer cable has
a kink in it, and wavers between 51 MPH and 59
MPH. Intuitively we estimate that we are
traveling about 55 MPH. What have we done?
We've developed an internal model of our speed.

We don't believe the measurement device (the
speedometer) entirely, but we incorporate its
input to a certain extent.

That "certain extent" is called the gain. The gain
is high if we tend to believe the measurements
and low if we tend to believe our internal model.

Figure 1. The speedometer cable
has a kink. An an example of a trivial filtering task.

ow, continuing our speedometer example,

suppose that we press on the accelerator. The
peedometer eventually wavers between 71 and

79 MPH. We tend to believe the speedometer
when it goes higher because we know that it
should be higher. That is we have other
knowledge in our model: the gain of the
measurements increases because we know of the
relationship between the accelerator depression
and increased speed.

Filters typically are classified as having either
fixed or adaptive gain. In a fixed gain filter, we
update our internal model by a predetermined
percentage of periodic measurements. In an
adaptive gain filter we update the model by a
varying percentage which correlates with our

knowledge of how one variable (example:
acceleration) affects another (example: speed).
Why is this important? Because the adaptive gain
filter will be more accurate during the period
when things change.

The above example suggests that the higher
levels of the neural cortex can act as an adaptive
filter. Is it possible that other biological neural
nets, or perhaps even some configurations of
artificial neural nets, are adaptive filters?

Other Biological Filters: Cerebellar
Hypothesis

Paulin has suggested [1] that the cerebellum
acts as a neural analog of a Kalman-Bucy filter.

The cerebellum controls gross and fine

movement of our motor system. It integrates
proprioceptor inputs from the muscles and

tendons-- all of which must disagree with each
other in both accuracy and phase=to stimulate
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muscular performance in a very precise manner.
Paulin's assertion is more precise [1 pp 1]:

" ...the cerebellum is directly involved in
certain sensory tasks such as predicting
trajectories and analyzing the mechanical
properties of objects".

Supporting evidence comes from a variety of
animals, including the coordination and senses of

teleosts (common bony fishes) and frogs. For
example, the predation reflexes of some sharks is
based on bio-electric phenomena. Frogs, which
have a poorly differentiated cerebellum, have an
amazingly accurate tongue used to snare prey.

Figure 2. Lower invertebrates use a very coarse
electrostatic sense that higher invertebrates lack to

sense prey. The coarseness of the sensory
apparatus is compensated for in the cerebellum.

The cerebellum is the dominant portion of the
brain in these lower invertebrates. The
granularity of the sensory input isn't accurate

enough to produce the fine motor control that
these species exhibit.

Like our speedometer example, the cerebellum
must somehow average the inputs to create an
answer that is more accurate than the inherent
accuracies of the many measurement sensors.

Paulin then shifts to a review of optimal state
estimation theory. He introduces the Kalman-
Bucy filter, which is a [1 pp 4]

"continuous-time extension of the Kalman
Filter, which estimates states of systems
governed by difference equations".

Paulin also discusses=using appropriate
experimental evidence-on the notion that training

allows the cerebellum to create relationships
between the different variables that model the
equations of motion. The model, then, is the
sensory product of cerebellar activity. The

experimental evidence suggests that responses
changing to stimuli seem to vary in a manner
consistent with an adaptive filter.

position velocity

position 1 .8

velocity .8 1

Figure 3. A simple covariance matrix

The key to Paulin's linkage of the Kalman-
Bucy Filter to the cerebellar sensor hypothesis is
the covariance feature of the filter for producing
an adaptive gain. The covariance, or state(s) of
awareness, is implemented as a matrix in digital
computing as shown in Figure 3 and as
intuitively understood in Figure 4. Digitally, the
covariance changes from cycle to cycle through a

set of equations known as a transition matrix.
Biologically, the transition matrix would be made
by neurological connections. The current
thinking is that a set of nerve extensions known
as climbing fibers interconnect at various levels

of the cerebellum to provide this function.
I will now discuss another aspect of the filter

that modulates the gain: the measurement noise.
This is like the wavering speedometer indicator in

Figure 4. It is a supplementary technique to the

calibration function provided by observation of
several related variables.
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velocity
~-----measured

. Simple Kalman Filter
Keith Brodie [2] designed (and I coded) a

imple Kalman Filter that is used to estimate the
difference between two observations of the same
henomena. In the application, the phenomena is
e pseudo-range from a GPS receiver to a GPS

atellite. The psuedo range measurement is
different on the Ll and L2 channels of the GPS

receiver because the signal suffers a phase delay
as it travel through the ionosphere as shown in
Figure 5.

A little thought spurs one to conclude that this
ame process must happen in biological neural
ystems. For example, two (or more)

proprioceptors measure, say, the movement of
the tendons controlling my right index finger; the
measured difference could indicate the curvature
of my right index finger at a particular moment.

But each proprioceptor has noise associated with
it And the cumulative accuracy is probably not
enough to finely control my finger unless their
inputs are averaged somehow.

Figure 4. An intuitive understanding of a covariance matrix. Knowledge
about one variable can be used to calibrate the accuracy of another. The
transition equation for the above situation is position = initial position plus

delta time.

pOSition
velocity measured
integrated
-oostnon

GPSSAT
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IONOSPHERE

GROUND STATION
Figure 5. Two measurements of the same thing. In
this case, the L 1 and L2 signals traverse the
ionosphere. The travel time of these Signals
depends upon the number and activity of the
electrons in the ionosphere. The GPS receiver has a
mechanism to determine what noise on the signal is.
Knowledge of the noise creates better estimates of
truth using filtering techniques.

The following simple filter illustrates how
knowledge of the measurement noise can be used
to better estimate the true delay. What would the
Kalman Filter look like for this [adapted from 2

pp 13-1,2,3] ?

(1) Initial State: X == S 1 - S2 where S1 and S2
are the two measurements, and X is the
difference between them.
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(2) Initial Covariance: P = al2 + a22, where ol
and a2 are the initial measurement noise

variances, and P is the covariance (in this case a
1 by 1 matrix)

On succeeding cycles the filter operates with
the following five simplified Kalman filter
equations:

(3) State Propagation: Xn+ 1 = Xn

(4) Covariance Propagation: Pn+ 1 = Pn + Q

where Q is the unmodelled process noise (the
value of Q starts out as a guess by the filter

designer and is tuned by subsequent simulations
depending upon response time required for the
filter). The net affect is that the covariance
automatically gets increased every update cycle as

a result of a constant Q component that tries to
account for random inputs, much like random
uncorrelated neuronal spikes.

(5) Kalman Gain Propagation: K = Pn+ 1/ Pn+ 1
+ al2 + cr22

where K is the Kalman Gain. Basically this just

says that gain is reduced when the measurement
noise is known to be high; i.e., the measurement
is noisy.

(6) State Update: X = K( S1 - S2) + (1 - K) X

(7) Covariance Update: Pn+l = (l-K)Pn+l

Here we have an adaptive filter that can adapt to

different levels of noise in the sensor system,
including transmission media.

In the more traditional, complex Kalman
opposed to Kalman-Bucy and the simple fi.:.

shown above) the observed states, affect e
other as follows:

(8) Covariance Propagation: P = <I>P<I>T + Q

(9) Gain Computation: K = P HT/(HPHT + R

(10) State Update: X = X + K (Z -HX)

where:
P is the covariance matrix.
<I>is the transition matrix (unity in the sim =>

filter),

Q is the process noise,
H is the observation matrix (translates fil
state to observed state... it was unity in
simple filter),
R is the measurement noise (a12 + a22 in ~-=>

simple filter) and.
Z is the input (S 1 and S2 in the simple filter.

For example, <I>could define the effe :

change of acceleration errors to velocity
position errors and P correlates the "certain. -

each state with every other state. During

debugging we often look at P to determine
it "thinks" about the certainty of its model, m -
like the ANS designer looks at the weigh
determine the intelligence trained into netw .

The multi-variable implementation of Q an

were the basis for Paulin's thesis. That is.
transition and observation matrices co ~-

system information, that are programmed i ·
traditional Kalman filter but are trained via tee

climbing fibers in the cerebellum.
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erview of Artificial Neural Systems
Artificial neural systems (ANS) are like

an filters in that they apply a series of
eights, W, to input signals to produce the
tput signals. Typically ANS are composed of
east three layers, an input layer, a middle, or

. den layer and an output layer. Whereas in a

an filter, the intelligence for adaptive
eighting present in the covariance, transition

process noise matrixes, the intelligence of an
. ~S is more or less contained in the hidden

."ers.
Kalman filter typically requires an analyst to

e ermine the equations to govern the adaptive
eighting. The equations contain "tuning"
eights that result from months of simulations

~ rformed by the analyst. An ANS is taught,
ough many examples, how to adaptively

eight the inputs based on the overall
aracteristics of a changing input signal. There

many ways to "teach" an ANS.

eural Net Single Neuron
neuron

Output Layer 0 put tJ;1
y=f(2. WiXi - 8)

Hidden Layer i=O
W W3 input

~~~~ffi

ard LimitedThreshold Sigmoid Linear
:::- re 6. A neural net is composed of a combination
_ single neurons. Neurons, or computational
=- ments perform a weighted sum of the inputs. The
s m is then passed through a transfer function that is

·callynon-linear.

Two training methods often used are backward
pagation or backprop [4] and a method similar

the annealing of a piece of metal (called a

Boltzman machine). The more common method,
backprop, is summarized later in this paper.

Since a neural net can be implemented as a set
of parallel units, it has the capability to rapidly
characterize a noise environment.

ANS Filtering Strategies
Klimasauskas [3] has summarized an ANS

approach to noise filtering where back-
propagation is used as an adaptive method for
filtering out noise.

In this approach, a three layer ANS consisting

of input, hidden, and output layers is organized
as an encoder, as shown in Figure 7. The hidden
units provide both data compression and feature
detectors [3, pp 32]:

output

hidden layer

input

Figure 7. A simple encoder used for noise filtering.
In addtion to the layer to layer connections,
feedforward connections that skip layers and
feedback connections that connect output to input
are sometimes used as well.

"The compression process eliminates portions

of the input data, which represent small or
nonrecurring features. By selecting the number
of encoders, you can vary the amount of detail
retained in the transformation."

Significant to Klimasauskas' discussion is the
ability to identify and recreate any frequency of

noise (including a low frequency bias and
~ 2e Technical Journal of Infotec Development, Inc. Page 31
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random non-stationary noise) and subtract it from
the input to remove the noise from the signal to
create a clean version of "Truth". The signal
presented is a rapidly varying signal that is
buffered and sampled multiple times to filter the
noise. The sidebar by Steve Melnikof in
Klimasauskas article describes the weight
training scheme. Basically, backprop is
implemented as follows:

• the input sequence is used to train the
network to adjust the weights to
recognize the time structure of the
network

• every N value is used as a target value
while the other N-1 inputs are used as
training inputs

• input/output and input/error
measurements are made (similar to what
happens when you say a word and you
realize that you didn't pronounce it
correctly)

• errors at the output of each neuron are
used to tweak the input weights on a layer
by layer basis backprop; this continues
until the input/output measurement error
is minimized

• a network simulator (Cognitron ™ in this
case) is used to test feedback and
feedforward connections (called a Jordon
network) that could enhance the
network's memory of the signal time
structure. A network simulator is a key
development tool.

KF vs ANS Approach to Noise Filtering
The following differences are apparent in the

two filtering schemes, and are summarized.

• Sampling Window: The Kalman Filter
treats the most recent inputs with more
priority than older inputs, while the ANS
approach can potentially use all points
within the buffered window for feature
recognition. See Figure 8.

w=1

w=-1

INPUT

Figure 8. ANS implementation of a simple Kalman
filter. The diagram shows an implementation of the
state update formula (10). The network shown is
artificially organized with a hidden layer because the
gain feature of the Kalman filter is analogous to the
feature recognition weights present in the hidden
layer of an encoder. In the network, the neurons are
Widrow-Hoff, mean the transfer function is linear.

• A Kalman Filter needs knowledge of the
problem programmed into its transition
matrix and observation matrices while the
ANS gains this by training.

• A Kalman Filter is computationally
expensive to execute while the ANS is
computation ally expensive to train. Once
trained, however, a hardware version of
an ANS could perform the sophisticated
filtering of a Kalman Filter on high rate

signals.

• The Kalman Filter is perhaps better suited

to the problem of merging several inputs
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appear linear) while the ANS is non-
linear.

• The Kalman Filter can learn-while-doing
(to the extent that the P-matrix can
change) to a greater extent that the current
generation of ANS noise filters which are

not easily weight-trained during
operation. See Figure 9.

create a solution close to the truth. The

". coder solution presented by
. asauskas seemed tied to a single

a eform.
• e Kalman Filter is linear (and in fact

e bulk of the work in implementing a
Kalman Filter is to make the inputs

Kalman Filter Weight (Gain) Update:
Covariance Propagation: P = <j>P<j>T + a
Gain Computation:K = P H T/ (HPHT + R) = P/(P+R) if H = 1

Encoder BackProp Weight Update [4]:
~Wji(n+1)
where

= 11(Opjopl ) + Mwji(n)
w is the weight
11is the gain associated with learning
Opi is the actual output before presentation to the neuron non-linearity
(pi = ( tpi - <Pi) Opi(1- opj) for an output unit

Opj(1- qJi) Iopkwki for a hidden unit
opj = 1/(1+ e -Iw ji Opi+ SD q:>i after the neuron's non-linearity
adwji(n) is the momentum term

Figure 9. Comparison of weight update equations for the Kalman filter and the backprop
method of neuron training are very different, yet there are some similarities: the process
noise, A, acts like the momentum term of back-prop.

Approaches to Noise Filtering
and Sung [5] have studied the properties
-ork that self-organizes its weights using

-Backprop method. Their intent was to
~ ""op a system that could classify even in the

ce of noise, but use the order of
"" ". tation as additional knowledge in the

cannng process. In their words:
temporal classification system produces

sian classifications that represent the
szs•.•istics of the temporal data, and the system

learning scheme of moving mean and
eovanance to update self-developed classes.

The activation value that permits a given
classification is a function of the covariance of an
input with previous patterns.

Multi-State Neural Network
The ability to merge several distinct inputs

streams, or difference several input streams to
filter noise appears viable. One approach would
be to create local filters for each input variable,
like the equations in the Kalman transition matrix
that model the state of an individual state.

For example, one could fabricate the simple

difference filter described earlier using two
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separate simple encoders like those shown in
Figure 10 as noise filters and a differencing
neuron at their output.

I I I I I I

/I~~

Figure 10. An ANS implementation of a multi-
variable differncing filter. This configuration filters
noise from each input stream separately.

However, if the two inputs are truly related to

each other, and if the noise is common to both,
the filtering scheme is not optimum. That is there

is knowledge that should couple the two filtering
nets. Figure 11 suggests another possibility to
merge inputs at the start. In this scheme, the
phase of the inputs would be tightly-coupled.

Figure 11. A simple encoder used for notse
of multiple input streams, where inputs are n"¥>,",""""ri
the onset.

Conclusions
The network connections and weight updazing

of a Kalman Filter and Encoder F e
distinctly different. However both
encode or are programmed to encode
information, perhaps even temporal informarion,
The correct organization of an encoder to perform
a difference filter is unknown, and ~ll'.JLll~

simulated to determine an optimal configiurazica,
However it seems that the fu ,... -
merging/differencing the inputs of ._,,-,,--

sensors that represent the same informa -

natural ANS implementation.
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